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‡ South Bank University, London SE1 0AA, UK
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Abstract. Algebraic spinors can be defined as minimal left ideals of Clifford algebras. We
consider gauge transformations which are two-sided equivalence transformations of a complete
algebra, including the spinors. These transformations of the spinors introduce new interaction
terms which appear hard to interpret. We establish algebraic theorems which allow these new
interaction terms to be evaluated and use these ideas to provide a new formulation of Glashow’s
electroweak interactions of leptons. The theorems also lead us to propose a new Clifford algebraic
definition of spinors based on nilpotents, rather than idempotents.

1. Minimal left ideals as spinors

Clifford, or geometric, algebras have come to be recognized as providing an appropriate,
and potentially rich, mathematical description of physics. The Pauli and Dirac matrices
used in models of fundamental particles are matrix representations of the basis vectors of
Clifford algebras associated with three-dimensional space and four-dimensional spacetime,
respectively. There has been much discussion in the literature about the representation of
Dirac spinors using Clifford algebras. It has become standard practice to identify spinors with
minimal left ideals of the algebras [1, 2]; we shall review these ideas briefly in this section.

Let us consider the general non-degenerate Clifford algebra associated with ann-
dimensional flat manifold. An orthonormal vector basis{eµ(x)} for the algebra is defined
by

{eµ(x), eν(x)} = 2Iηµν(x) µ, ν = 0, 1, 2, . . . , (n− 1) (1.1)

whereηµν are the components of the metric tensor on the space with

η =


1 0

. . .

1

}
p

q

{−1
. . .

−1

 ; (1.2)

so

ηµµ = 1 µ = 0, 1, . . . , (p − 1) (1.3)

ηµµ = −1 µ = p, (p + 1), . . . , (p + q − 1) (1.4)

ηµν = 0 µ 6= ν. (1.5)
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The basis vectors{eµ;µ = 0, 1, . . . , p − 1} of the flat space are timelike and the remaining
(n − p) basis vectors{eµ;µ = p, p + 1, . . . , n − 1} are spacelike. The set{eµ;µ =
0, 1, . . . , n − 1} forms an orthonormal vector basis of the Clifford algebraRp,q , p + q = n.
The complete set of basis elements ofRp,q is comprised of 2n multivector elements. We shall
denote a general multivector basis element byeT . Thus,eT either denotes the scalar or is a
shorthand way of writing

eT = eµ1eµ2 . . . eµm ≡ eµ1µ2...µm µ = 0, 1, . . . , n− 1 and µ1 < µ2 < . . . < µm.

(1.6)

A general elementA of Rp,q is a linear combination over the reals of the basis elements:

A =
2n∑
T=1

aT eT , aT ∈ R. (1.7)

Ideals of the algebraRp,q may be defined using idempotents which are elementsU of the
algebra satisfying

U2 = U. (1.8)

A left ideal of the algebraRp,q is a subset of the algebra which is defined by the action of an
idempotentU on the right of each of the elementsA of Rp,q . Thus, a left ideal is the set

{AU ; anyA ∈ Rp,q}. (1.9)

A left ideal ofRp,q is minimal if U is a primitive idempotent [1]: that is, ifU is the product
of a maximal numberk of ‘simple idempotents’:

U = 1

2
(I + p1)

1

2
(I + p2) . . .

1

2
(I + pk) ≡ 1

2k

k∏
i=1

(I + pi) (1.10)

where the set of ‘projectors’{pi; i = 1, 2, . . . , k} is such thatp2
i = I and [pi, pj ] = 0 for

i, j = 1, 2, . . . k. These last two conditions ensure thatU is an idempotent.
The value ofk is defined uniquely for eachRp,q as

k = q − rq−p (1.11)

whereri is theRadon–Hurwitz number. Since the values of the Radon–Hurwitz number form
a cycle of period eight:

ri+8 = ri + 4 (1.12)

all the values of allri are defined by table 1. The numberk defined by (1.11) and (1.12) is the
maximal number of commuting elements of squareI which can be found in any algebraRp,q .

It has been shown [1, 3] that an element of a minimal left ideal inR1,3 contains eight real or
four complex parameters, which is sufficient to describe all the physically relevant information
of a Dirac column spinor. Thus minimal left ideals inR1,3 are normally regarded as equivalent
to Dirac column spinors. This may be generalized [3] to any algebraRp,q in which ‘algebraic
spinors’ are defined as elements of a minimal left ideal. InRp,q a basis for a minimal left ideal
contains 2n−k elements. Thus an algebraic spinor inRp,q contains 2n−k real parameters, which
is sufficient to describe 2n−k−3 Dirac spinors.

Table 1. The values of the Radon–Hurwitz number.

i 0 1 2 3 4 5 6 7
ri 0 1 2 2 3 3 3 3
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We define a bar conjugate spinor from a spinor using an operation referred to as ‘Hermitian
conjugation’ since it is equivalent to Hermitian conjugation of the matrix representation of
certain algebras. The Hermitian conjugate of a basis multivectoreT is defined to be

e
†
T = eT if e2

T = I (1.13a)

e
†
T = −eT if e2

T = −I. (1.13b)

In some algebras the operation of Hermitian conjugation is equivalent to an inner automorphism
of the algebra [3], which is defined on any multivector basis element by

e
†
T = 0eRT 0−1 (1.14)

whereeRT denotes the reversal ofeT , that is

eRT = (−1)m(m−1)/2eµ1µ2...µm = (−1)m(m−1)/2eT . (1.15)

The operator0 as defined in (1.14) does not exist in everyRp,q . It can be defined in algebras
in which eitherp is odd orq is even,q 6= 0. In the first case, the operator0 is thep-vector
e012...(p−1) which is the product of thep timelike basis vectors, and in the second case it is the
q-vectorep(p+1)...(p+q−1) which is the product of theq spacelike vectors. Ifbothp is evenand
q is odd, then0 does not exist.

If we denote an algebraic spinor byψ , so thatψ is an element of a minimal left ideal of
Rp,q , then we define its bar conjugate to be

ψ̄ = ψ†0 (1.16)

which by using (1.13) can be shown to be

ψ̄ = 0ψR. (1.17)

To conclude this section, we consider as an example the Dirac algebraR1,3 in which, from
(1.11) and table 1, the value ofk is given by

k = 3− r2 = 1.

Therefore a primitive idempotent inR1,3 will contain just one factor; for example,

U = 1
2(I + e0) (1.18)

is primitive. Using this idempotent, we define a minimal left ideal with elements

{A 1
2(I + e0); anyA ∈ R1,3}. (1.19)

In this representation, the bar conjugate to this spinor is

ψ̄ = 0ψR = e0
1
2(I + e0)A

R

= 1
2(I + e0)A

R. (1.20)

When the 16 basis elements ofR1,3 are post-multiplied by the primitive idempotent (1.18), we
obtain eight distinct terms:

{U, eiU, eijU, e123U ; i, j = 1, 2, 3, i < j}
which form a basis for the minimal left ideal. Thusψ andψ̄ may be written, respectively, as

ψ = (α + αiei + αij eij + α123e123)U i, j = 1, 2, 3, i 6= j (1.21a)

and

ψ̄ = U(α + αiei − αij eij − α123e123) (1.21b)

where the coefficientsαT are real.
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In matrix representation the ‘Dirac metric’ or ‘invariant length’ of the spinor is defined
to be Trace(ψ̄ψ). In algebraic terms this is equivalent to determining the scalar part of the
element(ψ̄ψ) and is denoted by〈ψ̄ψ〉S . The scalar part is equivalent to the trace of a matrix,
and hence it satisfies a cyclic property

〈ABC〉S = 〈BCA〉S = 〈CAB〉S. (1.22)

We shall calculate this quantity in the algebraR1,3 using the ideal (1.19). The scalar part of
(ψ̄ψ) consists only of those terms in whicheRT multiplieseT , that is, from the multiplication
of ‘like’ terms. Consequently we deduce that

〈ψ̄ψ〉S = 〈U(α2 + α2
i − α2

ij − α2
123)U〉S

= 〈U2(α2 + α2
i − α2

ij − α2
123)〉S

= 1
2(α

2 + α2
i − α2

ij − α2
123).

It thus consists of a sum of eight squares, four each of positive and negative signs, which is
exactly what we would expect from the product of a Dirac spinor and its bar conjugate.

Other bispinor densities including the Dirac metric are defined [4] from the expression

〈ψ̄Bψ〉S (1.23)

whereB is any element of the algebraR1,3. For example, whenB = eµ(µ = 0, 1, 2, 3) we
define a component of the conserved currentjµ in Minkowski spacetime.

2. Gauge transformations of spinors

The standard Yang–Mills gauge transformation of a column spinorψ is given by

ψ → Q(x)ψ (2.1a)

ψ̄ → ψ̄Q−1(x) (2.1b)

whereQ(x) is some local unitary transformation. Invariance of the Lagrangian density under
the local transformations (2.1) is achieved by introducing a covariant derivativeDµ, where

Dµ = ∂µ −�µ. (2.2)

The connection terms�µ in Dµ transform according to

�µ→ Q(x)�µQ
−1(x) + (∂µQ)Q

−1 (2.3)

so that

Dµψ → QDµψ (2.4)

and then the Lagrangian density

ψ̄ ieµ(Dµψ) (2.5)

is gauge invariant. The term̄ψ ieµ�µψ in (2.5) represents the interaction of the spinor with
the vector boson fields. In the algebraR1,3 we are most familiar with, the Lagrangian density
is written in the formψ̄ iγ µ(Dµψ) whereγ µ is the Dirac matrix representation ofeµ.

The form (2.1) and (2.3) of the gauge transformation is appropriate for column spinors
and conjugate row spinors. In previous papers, we have made the assumption that the form of
the gauge transformations is the same for algebraic spinors, so that the transformed algebraic
spinor remains within the ideal (1.9). Then the gauge transformations (2.1) of spinors are of
the same ‘one-sided’ form as, say, transformations under the rotation group which correspond
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to the half-odd-integral spin of fermions. However, the assumption that algebraic spinors
undergo a transformation of the form (2.1) implies that the idempotentU in the spinor

ψ = AU (2.6)

transforms differently to the general elementA of the algebra. This is becauseU itself is an
element of the ideal, and so transforms by

U → QU. (2.7a)

But (2.1) can be written as

AU → (QAQ−1)(QU)

which implies that the general elementA must transform by the equivalence transformation

A→ QAQ−1. (2.7b)

Thus, although the idempotent is defined by (1.10) in terms of the elements of the algebra, it
does not transform as an element itself. So the constituents of the ideal must be regarded as
a distinct set of mathematical entities which are subject to the one-sided transformation law
(2.1a).

A further problem is that, as in (2.7a), the transformed idempotent isQU : but for most
transformationsQ,

(QU)2 6= QU.
So the transformation does not transform an idempotent into an idempotent.

There is an alternative to this process of defining an ideal in terms of elements of the algebra,
and then ascribing to it a transformation law different to that of the elements themselves. We
can treat an idempotent (1.10) and the corresponding ideal (1.9) as elements of the algebra
Rp,q , and consider gauge transformations which are local changes of representation by a
position-dependent equivalence transformation of all elementsX, including the spinors:

X→ Q(x)XQ−1(x). (2.8)

These transformations differ in several ways from Yang–Mills transformations, and it is the
purpose of this paper to study these differences. One difference is that the ideal defining the
spinor changes under the transformation (2.8), but this has the advantage that an idempotent
transforms into an idempotent, since

(QUQ−1)2 = QU2Q−1 = QUQ−1.

This ensures that an ideal transforms into an ideal. The change in the form of gauge
transformation does not imply any change in the (left-sided) operation of the rotation or Lorentz
group on a spinor, except that the representatives of these groups are themselves transformed
by (2.8).

If φ andψ are algebraic spinors, the transition amplitude fromψ to φ of an elementA is
the scalar part of̄φAψ , denoted by〈φ̄Aψ〉S . Likewise, the free Lagrangian is defined as

〈ψ̄ ieµ(∂µψ)〉S (2.9)

where all terms in the Lagrangian are viewed as being elements of the Clifford algebra,
including the imaginary unit i. We have discussed elsewhere the existence within a Clifford
algebra of an imaginary unit [3, 5]. To summarize, the algebraRp,q , p + q = n, contains
an element which can be identified as having properties equivalent to the imaginary unit
provided that(q − p) = 1 mod(4). In these algebras the imaginary unit is represented by the
pseudoscalar, that is, the basis multivector which is the product of alln basis vectors. The
definition of a Lagrangian density of the form (2.9) depends not only on the existence of the
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imaginary unit i but also on the operator0. Thus it can only be defined in a much more
restricted class of algebrasRp,q for which (p − q) = 3 mod(4) andq is even,q 6= 0 [3].

Modification of the gauge transformation on the spinors to (2.8) has implications when we
consider invariance of the Lagrangian (2.9). It will not be invariant under the transformation
(2.8) if we replace the partial derivative with the covariant derivative defined by (2.2).
Invariance can be achieved if, instead of using (2.2), we redefine the covariant derivative
as

Dµψ = ∂µψ − [�µ,ψ ] (2.10)

and still retain the same transformation (2.3) of�µ. The definition (2.10) of the covariant
derivative ensures that it transforms according to (2.8) like all the other elements of the algebra.
Thus the Lagrangian transforms

〈ψ̄ ieµ(Dµψ)〉S → 〈Qψ̄ ieµ(Dµψ)Q
−1〉S.

By using the cyclic property (1.22), this is easily shown to be an invariant quantity.
In the algebraic representation, the transformation of�µ is best thought of as consisting

of two parts. This becomes explicit if we write it as:

�µ→ Q(x)[�µ +Q−1(∂µQ)]Q
−1(x). (2.11)

Here�µ as an element ofRp,q undergoes a similarity transformation as all the other elements
do. However, we require it additionally to be a potential with particular gauge transformation
properties in accordance with the Yang–Mills formulation.

The invariant Lagrangian

〈ψ̄ ieµ(Dµψ)〉S (2.12)

contains the usual spinor kinetic energy term and the usual interaction term with the vector
boson fields,−〈ψ̄ ieµ�µψ〉S . However, it also contains the term

〈ψ̄ ieµψ�µ〉S (2.13)

which is not of traditional bispinor density form. Other authors [6, 7] have considered terms
such as these and have tried interpreting them in a variety of ways. For example, since they
have�µ operating onψ on the right, these terms mix different minimal left ideals, so they
have been given a family interpretation. We make a different proposal about these terms and
show that they contribute to the usual interaction terms with the vector bosons. In the next
section we will concentrate on general algebraic results which enable us to make this case.

3. General results for all algebrasRp,q

In (1.10) we defined a primitive idempotent as a product ofk simple idempotents, wherek is
defined by the Radon–Hurwitz number. Each of thek simple idempotents has the form

1
2(I + pi) i = 1, 2, . . . , k (3.1)

with the projectorspi satisfyingp2
i = I and [pi, pj ] = 0 for i, j = 1, 2, . . . k. We can without

loss of generality choose the projectors{pi; i = 1, 2, . . . , k} to be basis multivectors in the
algebraRp,q since, if they are not already multivectors, then the representation of the algebra
can be changed so that they are.

The choice of positive sign in a simple idempotent is arbitrary and could be replaced by
a minus sign. Thus we define a pair of possible simple idempotentsU±i as

U±i = 1
2(I ± pi). (3.2)
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These two idempotents are mutually annihilating, that is,

U+
i U
−
i = U−i U+

i = 0. (3.3)

We now collect together some results about the idempotents and the projectors, which we shall
use to derive the main result of this section.

Lemma 3.1.

(i) U±i pj = pjU±i wherei 6= j .
(ii) [U±i , U

±
j ] = 0 for all i andj .

(iii) U±i pi = ±piU±i .
(iv) If α is some multivector basis element of the algebra and{α, pi} = 0, thenU±i α = αU∓i .
(v) If α is some multivector basis element of the algebra and[α, pi ] = 0, thenU±i α = αU±i .

Proof.

(i) This follows automatically from the definition of the primitive idempotent (1.10) in which
the set of projectors{pi} must be a commuting set.

(ii) These results follow directly from (i).
(iii) This follows from the definitions ofU±i and the propertyp2

i = I .
(iv) If {α, pi} = 0, then it follows that(I − pi)α = α(I + pi). Thus the result follows.
(v) The result follows in a similar way to (iv).

�

We are now able to prove the main result which will be needed in the next section.

Theorem 3.2.Let U be a primitive idempotent inRp,q which is a product of thek simple
idempotentsUi which each have the form of one of the idempotent pair (3.2) and wherek is the
Radon–Hurwitz number. IfeT is any basis multivector of the algebra which is self conjugate,
that is,eT = e†

T , then

UeT U = λU
whereλ is either+1,−1 or 0.

Proof. In the proof we shall assume that the primitive idempotentU is a product of simple
idempotents each of the formU+

i , that is,

U = U+
1U

+
2 . . . U

+
j . . . U

+
k .

The proof proceeds in a similar way ifU is a product of idempotents each of the formU−i , or
a mixture ofU+

i andU−i .
SinceeT is self-conjugate, it must by (1.13) square toI . The termeT must then be a

member of one of two discrete sets:

(a) those in which the multivector is a product of elements of the set{I, pi; i = 1, 2, . . . , k};
(b) those in which the multivector is a product of elements of the set{I, pi; i = 1, 2, . . . , k}

together withother multivector basis elements{αr}.
Thus the terms in the set (b) are all products of multivectors containing at least one factor

αr distinct from {pi}. We note that the set (b) cannot containall possibleproducts of the
elements{I, pi, αr} since some of these products will have square−I .

We shall establish the theorem in several stages. First consider those termseT which
belong to set (a):
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(i) The term in (a) which is proportional toI is automatically in the required format since
UIU = U2 = U .

(ii) Next consider terms in (a) which are proportional to a single projectorpj :
In the expressionUpj = U+

1U
+
2 . . . U

+
j . . . U

+
k pj , the projector can be commuted past each

U+
i i > j , by lemma 3.1 (i). Whenpj meetsU+

j it will be ‘absorbed’ using lemma 3.1
(iii). Thus

Upj = U.
If U−j appears inU instead ofU+

j then the overall result is only changed by an overall
minus sign.

(iii) The process of ‘absorption’ can readily be extended to terms in set (a) which are a product
of several projectors. So

U
∏
s

ps = U.

Again there may be a sign change in this result ifU is comprised of some simple
idempotents of the formU−i .

Thus any multivector in the set (a) produces a termλU2 = λU , whereλ = ±1.

We now consider the terms in set (b).

(iv) Consider first the collection of terms in the set (b) which are proportional to a single
multivector basis elementαr . We recall thatαr is not equal to any of the elements in set
(a) and it squares to giveI . The set of projectors{pi} which are used to form a primitive
idempotent is amaximalset of commuting elements with squareI . Thus the element
αr must anti-commute with at least one of the projectors in the set{pi}. Let the greatest
value of the subscripti(i = 1, 2, . . . , k) for whichαr anti-commutes withpi be denoted
by i = j .
In the expressionUαr = U+

1U
+
2 . . . U

+
j . . . U

+
k αr , the elementαr can be commuted past

eachU+
i i > j without changing its form by lemma 3.1 (v). Whenαr meetsU+

j , it can by
lemma 3.1 (iv) be taken throughU+

j , but in doing so will convert it toU−j giving

Uαr = U+
1U

+
2 . . . αrU

−
j U

+
j+1 . . . U

+
k

= U+
1U

+
2 . . . αrU

+
j+1 . . . U

+
k U
−
j

by using lemma 3.1 (ii). Thus

UαrU = U+
1U

+
2 . . . αrU

+
j+1 . . . U

+
k U
−
j U

+
1U

+
2 . . . U

+
j . . . U

+
k

= U+
1U

+
2 . . . αrU

+
j+1 . . . U

+
k U
−
j U

+
j U

+
1U

+
2 . . . U

+
k (3.4)

making use of lemma 3.1 (ii) to rearrange the order of the simple idempotents.
By using (3.3), the pair of idempotentsU−j U

+
j in the centre of this expression annihilate

one another. Thus the terms which are of the formUαrU are zero.
(v) The reduction of terms to zero also applies to the other terms in set (b), that is, those

containing a product of a number of terms in set{I, pi; i = 1, 2, . . . , k} together with
some of the elements{αr}. The argument is essentially a combination of the arguments
given above: anypi is absorbed, but commutation of some{αr} throughU leads to an
expression similar to (3.4), in which at least oneU+

j on the left is replaced byU−j , ensuring
that the element is zero. It is at this stage that multiplicative independence is important.

If U containsU−j rather thanU+
j then the argument is similar since the anti-commutation

of αr will convertU−j intoU+
j which will then ensure annihilation. �
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Corollary 3.2. In algebrasRp,q for which(q − p) = 1 mod(4) then, with no restrictions on
eT ,

UeT U = ζU
whereζ is either±i,±1 or 0.

Proof. As we mention in section 2, when(q−p) = 1 mod(4), the pseudoscalar of the algebra
can be considered to be the unit imaginary i. The basis multivectors of the algebra can be
divided into two sets{eT } and{ieT }. The elements in the first set can be divided into two:
those which square toI and are denoted by{fT }; and those which square to−I denoted by
{gT }. Then the complete set of basis multivectors which square toI is {fT , igT }. Theorem 3.2
will apply directly to any basis multivector from the set{fT , igT }. However, none of the
arguments in the proof of the theorem would be affected if we were to considereT instead as a
member of{ifT , gT }. The only difference would be in the final outcome; that is, under these
circumstances,

UeT U = ±iU

where i should be regarded as the pseudoscalar ofRp,q . This is quite consistent with referring
to it as the imaginary unit since it satisfies all the required properties. �

The proof of theorem 3.2 and its corollary demonstrates that a term of the formUeT U

with eT self-conjugate is only non-zero wheneT is proportional to products of elements of
the set{I, pi, i = 1, 2, . . . , k}; in these terms the projectorspi are ‘absorbed’ intoU with
non-zero coefficient. Thus, all termsUeT U reduce toζU2 = ζU , whereζ = ±i, ±1 or 0.

In appendix A, examples 1 and 2 demonstrate the use of theorem 3.2 and corollary 3.2 to
evaluate terms of the formUeT U in the algebrasR3,0 andR2,3.

4. Consideration of the additional interaction terms

In section 2 we remarked that the extra terms produced by the two-sided gauge transformation
of the spinor were not of the traditional bispinor density form. We shall now use the results of
section 3 to reconsider these terms.

By taking the definition (2.6) of a spinor as an element of a minimal left ideal of the
Clifford algebraRp,q , the bar conjugate spinor defined as in (1.16) becomes

ψ̄ = U†0AR. (4.1)

Since the projectorspi in the simple idempotents comprisingU are such thatp2
i = I , they are

by (1.13) self-Hermitian. By applying lemma 3.1 (ii) we can reverse the order of the simple
idempotents inU† so thatU† = U and (4.1) becomes

ψ̄ = U0AR.
Then the ‘new’ interaction term (2.13) can be written as

〈ψ̄ ieµψ�µ〉S = 〈U0AR ieµAU�µ〉S (4.2)

= 〈0AR ieµAU�µU〉S. (4.3)

The connection�µ in (4.3) can be expressed as a sum of terms each of which has the form of
anx-dependent real field, which is a Clifford scalar, multiplied by a multivector basis element
of Rp,q . Let a typical term in�µ be denoted byWT

µ eT , whereWT
µ is a Clifford scalar. We

shall illustrate the reduction of (4.3) by considering this typical term only. Given that the
Lagrangian has to be defined using an imaginary unit i and the operator0, a Lagrangian field
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theory based on (4.2) can only be defined for algebrasRp,q for which(p−q) = 3 mod(4) and
q is even. This is a special case of the algebras to which corollary 3.2 applies. Thus, applying
corollary 3.2 to the expressionU�µU within (4.3), it follows that the contribution from the
termWT

µ eT , if it is not zero, is of the form

ζ 〈0AR ieµAWT
µ IU〉S = ζ 〈0AR ieµAWT

µ IU
2〉S

= ζ 〈0AR ieµWT
µ AU

2〉S
= ζ 〈U0AR ieµWT

µ AU〉S
= ζ 〈ψ̄ ieµWT

µ Iψ〉S (4.4)

whereζ is±1 or±i, that is, plus or minus the scalar or pseudoscalar of the algebra. The only
terms which remain from (4.3) will be a sum of terms of the form (4.4). These all have the
form of standard interactions since they all have bispinor density form. In particular the ‘real’
terms of type (4.4) have the form of a standardU(1) interaction

−〈ψ̄eµWT
µ Iψ〉S. (4.5)

Given a symmetrized Lagrangian with kinetic terms for bothψ andψ̄ , the ‘imaginary’ terms
of type (4.4) will vanish.

The appearance of the extra terms (4.5), which have the form of aU(1) interaction, is a
completely new feature of gauge theory. However, if we treat the spinors as normal elements of
a Clifford algebra, we have to accept the existence of these new interaction terms and explain
their meaning. We have proposed an answer which applies to all possible interaction terms. In
appendix B, we have considered what effect the inclusion of the new interaction terms (4.5) has
on the Glashow description of electroweak interactions of leptons [8]. If we make a particular
choice of idempotent, a remarkable result follows: we need only include in�µ those parts of
the Glashow interactions incorporatingSU(2) generators. Then the extra term arising in our
new covariant derivative gives precisely the additional term in the observed interactions. So
our gauge transformations are simpler than those assumed in the standard theory, but give rise
to the usual leptonic electroweak interactions.

5. A new definition of spinors

Although we have already established our required outcome in section 4, we shall investigate
further the results of section 3. We shall show that it is possible to use them to define an
alternative but equivalent Clifford algebraic definition of spinors. The alternative definition is
based on the observation that the idempotentsU±i can each be factorized into the product of a
pair of ‘conjugate’ nilpotents, as demonstrated in the following theorem.

Theorem 5.1. If U±i is written as

U±i = 1
4(Hi ± Ai)(Hi ∓ Ai) (5.1a)

with nilpotent factors satisfying

(Hi +Ai)
2 = (Hi − Ai)2 = 0 (5.1b)

thenHi andAi are such that

H 2
i = −A2

i = I {Hi,Ai} = 0 pi = AiHi = −HiAi. (5.2)

Proof. The proposed factorization ofU±i implies that

U+
i ≡ 1

2(I + pi) = 1
4(H

2
i − A2

i + [Ai,Hi ])

U−i ≡ 1
2(I − pi) = 1

4(H
2
i − A2

i − [Ai,Hi ]).
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Adding and subtracting these equations give

I = 1
2(H

2
i − A2

i ) (5.3a)

pi = 1
2[Ai,Hi ]. (5.3b)

From conditions (5.2), we can deduce that

H 2
i +A2

i + {Ai,Hi} = 0

H 2
i +A2

i − {Ai,Hi} = 0.

Adding and subtracting these equations give

H 2
i +A2

i = 0 (5.3c)

{Hi,Ai} = 0. (5.3d)

The various equations (5.3) then yield the required results. �

In appendix A, we demonstrate in example 3 how a familiar idempotent of the Pauli algebra
R3,0 can be factorized into two equally familiar conjugate nilpotents. This is the simplest and
most fundamental factorization into nilpotents. In example 4 we consider the factorization for
the algebraR2,3.

We have already noted in section 3 that we can without loss of generality choose the
projectors{pi; i = 1, 2, . . . , k} to be basis multivectors in the algebraRp,q . For each algebra
Rp,q there are always at least 2k independent multivectors which square toI . Thus having
chosenpi as basis multivectors we can choose the form of the factorization in theorem 5.1 so
the elements{Hi; i = 1, 2, . . . , k} are also basis multivectors and hence are invertible. Having
chosenpi andHi in this way the termsAi in the factorization are then defined as

Ai = H−1
i pi i = 1, 2, . . . , k.

This implies that all of theAi are also basis multivectors. From (1.14) we can then deduce the
following hermiticity properties forpi ,Hi andAi :

p
†
i = pi H

†
i = Hi A

†
i = −Ai (i = 1, 2, . . . , k). (5.4)

This explains our use of the term ‘conjugate’ when applied to the pair of terms which comprise
the factorization ofU±i . Each idempotent is factorized into a pair of nilpotents, one of which
is the Hermitian conjugate of the other. We denote the nilpotents by

Ni = 1
2(Hi +Ai) i = 1, 2, . . . , k. (5.5a)

Then

U+
i = NiN†

i and U−i = N†
i Ni (5.6)

where

N
†
i = 1

2(Hi − Ai). (5.5b)

The results of theorem 3.2 and its corollary lead us to similar results in which the idempotents
are replaced by the nilpotents. But first we note some identities which relate the nilpotentsNi
andN†

i to the idempotentU+
i :

U+
i = NiHi (5.7a)

U+
i = HiN†

i . (5.7b)

The identities (5.7) follow directly from the definitions (3.2), (5.5a) and (5.5b) for U+
i ,Ni and

N
†
i respectively and using (5.1b) for pi .
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By using (5.7) the primitive idempotentU in theorem 3.2 can be written as

U = N1H1N2H2 . . . NkHk (5.8a)

or, since the simple idempotents inU commute and so can appear in any order, it can also be
written as

U = HkN†
k . . . H2N

†
2H1N

†
1 . (5.8b)

Thus the expressionUeT U to which theorem 3.2 applies is equivalent to

N1H1N2H2 . . . NkHkeT HkN
†
k . . . H2N

†
2H1N

†
1 . (5.9)

The Hermitian termHi in this expression is a basis multivector and thus will either commute
or anti-commute with the factorsAj andHj comprisingNj andN†

j . Thus

HiNj = NjHi andHiN
†
j = N†

j Hi if [Aj ,Hi ] = [Hj,Hi ] = 0, i 6= j
= −NjHi = −N†

j Hi if {Aj ,Hi} = {Hj,Hi} = 0, i 6= j
= N†

j Hi = NjHi if {Aj ,Hi} = [Hj,Hi ] = 0, i 6= j
= −N†

j Hi = −NjHi if [Aj ,Hi ] = {Hj,Hi} = 0, i 6= j.

(5.10)

This means that all of theHi on the left and right ofeT in (5.9) can be brought through the
N

†
i andNi terms and the only effect will be to change someNi to N†

i and vice versa and to
introduce a possible overall sign change. It is important to note that if someHi on the right
when brought through a particularN†

j converts it toNj , then the sameHi on the left when

brought throughNj will convert it toN†
j . Thus, by using (5.10) repeatedly, we can show that

(5.9) can be written as

NHk . . . H2H1eT H1H2 . . . HkN
† (5.11)

where

N =
k∏
i=1

(±N(†)
i ). (5.12)

The sign in each term in the product in (5.12) and also whether or not the Hermitian conjugate
N

†
i (as denoted by the † sign appearing in brackets) is used depends on the outcome of bringing

each of theHj , j = 1, 2, . . . k, through each of theN†
j , j = 1, 2, . . . k, as determined by (5.10).

Since eachHi , i = 1, 2, . . . k, is a basis multivector, it will either commute or anti-
commute with the basis multivectoreT . Thus, sinceH 2

i = I , (5.11) reduces to

±NeTN†. (5.13a)

In the simple case wheneT = I , then (5.11) reduces to

NN†. (5.13b)

Hence using (5.13a) and (5.13b) we find, respectively, that

UeT U ≡ ±NeTN† (5.14a)

and

U = U2 = NN† (5.14b)

thus the statement of theorem 3.2 is equivalent to

NeTN
† = λNN† (5.15)

whereλ = ±1 or 0. This process of absorption by nilpotents of the algebrasR3,0 andR2,3 is
discussed in examples 3 and 4 of appendix A.
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Given the ‘equivalent’ status of the idempotentU and the nilpotentN in respect of
theorem 3.2, it is interesting to speculate whether there is an equivalent Clifford algebraic
definition of spinors based on nilpotents as opposed to idempotents. We complete this section
by demonstrating this fact.

The alternative definition of a spinor takes as its starting point the product of nilpotentsN .
A spinorχ is defined to be an element of the set{CN,C ∈ Rp,q}. The bar conjugate spinor
χ̄ is defined as in (1.16) and is given by

χ̄ = N†0CR. (5.16)

It is important to show that this new definition of a spinor is equivalent, when evaluating
standard interaction terms, to the definition in section 1 using the primitive idempotents. To
demonstrate this, we consider a bispinor density term using the new definition of spinors and
relate it to the definition in terms of idempotents using (5.15) which connectsU toN :

〈χ̄Bχ〉S = 〈N†0CRBCN〉S
= 〈0CRBCNN†〉S
= 〈0CRBCU〉S
= 〈0CRBCU2〉S
= 〈U0CRBCU〉S. (5.17)

The expression (5.17) is identical to, and contains the same information as, the bispinor density
defined using the spinorψ and its bar conjugatēψ , which are

ψ = CU (5.18a)

ψ̄ = U0CR. (5.18b)

The alternative spinorχ has the same properties asψ in respect of the additional terms in the
Lagrangian of the form

〈χ̄BχeT 〉S = 〈N†0CRBCNeT 〉S
= 〈0CRB CNeTN†〉S.

They too will reduce to standardU(1) interaction terms by virtue of the result (5.15).

6. Discussion

In previous work [9–12], we have developed spin gauge models of families of elementary
particles and their interactions, using the standard Clifford algebraic definition of spinors as
left ideals of an algebra, based on idempotents. We have also assumed that the interactions
were generated by gauge transformations of Yang–Mills form. We have been aware of possible
differences between the Clifford algebra approach and the standard theory based on Hilbert
space concepts.

More recently, we have developed and extended work by Li [13], seeking to define all
quantities and operations in spin gauge theory models on a proper algebraic basis, spinors
being identified with standard minimal left ideals [3]. This study has led us to consider gauge
theories in which algebraic spinors are transformed in the same way as general elements of an
algebra, by two-sided equivalence transformations. To us, this seems the simplest and most
natural assumption for transformations which correspond to no physically observable effects.
However, two-sided gauge transformations of spinors imply that the corresponding Lagrangian
interaction terms contain thecommutator[�µ,ψ ] of the interaction potential with the spinor,
rather than the usual product�µψ of these terms. So a new type of interaction term arises, in



2818 J S R Chisholm and R S Farwell

which the interaction potential appears on the ‘wrong side’ of the spinor. The solution of one
problem gives rise to a further problem!

It is important to note that the two-sided gauge transformations are impossible for standard
column spinors. The new type of gauge transformation is thus only applicable to algebraic
spinors. In the algebraic formulation, the Lagrangian is the scalar part of an element of an
algebraRp,q , with p− q = 3 (not 4) andq even,q 6= 0, that is a ‘physical’ algebra. Our new
interaction term occurs, within the scalar part, sandwiched between the spinor idempotents
both on the left and on the right. We have been able to interpret and evaluate this term using the
result established in corollary 3.2, thatanyelement of the algebra lying between two primitive
idempotent operators reduces to a multiple (sometimes zero) of the Clifford scalar. The element
is thus ‘absorbed’ by the idempotents. So any possible interaction term ‘on the wrong side’ is
either zero or is equivalent to a potential generated by aU(1) gauge transformation.

We have shown that the result of theorem 3.2 can be expressed in an alternative but
equivalent way using conjugate nilpotent pairs which arise in the factorization of each of the
idempotents in the primitive idempotent. This leads to an alternative but equivalent definition
of Clifford algebraic spinors.

In appendix B, we have proposed an alternative account of the electroweak interactions
of leptons [8]. We find that if the usualSU(2) interaction terms are generated by gauge
transformations, a suitable choice of idempotent or nilpotent factors ensures that the ‘extra’
interaction potential is precisely equal to the additionalU(1) interaction term, with the correct
coupling constant. So the helicity-minus electroweak interactions arise from a simpler gauge
transformation than in standard theory. Our new form of gauge theory has thus led to an
unexpected simplification in the basic electroweak gauge transformations for leptons. This
simplification is very welcome, but these ideas need to be applied in a wider context, to cover
both strong and gravitational interactions. We have already developed a spin gauge model
incorporating all particle interactions [12], but this now needs to be modified to incorporate
the new type of interaction term. The incorporation of gravitational interactions requires space-
time to be curved, but this should not affect the introduction of two-sided transformations and
nilpotents described in this paper. Our interpretation of fermion mass terms as ‘frame field
interactions’ must also be studied in this new context, but our first impressions are that no
insuperable problems will arise, because of the comprehensive nature of theorem 3.3 and
corollary 3.3, and of our nilpotent factorization.

Appendix A

In the first two examples in this appendix, we illustrate the process of ‘absorption’ and
‘annihilation’ of typical elements of an algebra by an idempotent. Our third and fourth
examples demonstrate the factorization of minimal idempotents into conjugate pairs of
nilpotent factors.

Example 1. The simplest algebra for which the absorption property is nontrivial is the
physically important Pauli algebraR3,0. An orthonormal set of basis vectors{er; r = 0, 1, 2}
of the algebra satisfy the anti-commutation relations

{er , es} = 2Iδrs (A.1)

whereI is the unit of the algebra. The well known Pauli matrices{ρs; s = r + 1} form
a representation of these basis vectors. The pseudoscalarω = e0e1e2 satisfiesω2 = −I
and commutes with every element of the algebra; so it behaves in every respect like the
imaginary unit, and we shall use the notation ‘i’ for ω. Note thatp = 3 andq = 0 satisfy
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q − p = 1 mod(4), the condition for the pseudoscalar to be taken as the imaginary unit. The
bivectors of the algebra can be written as{ier}.

The maximum number of commuting projectors with squareI is

k = q − rq−p = 0− r−3 = 4− r5 = 1

and we can choose this projector asp = e0, so that the primitive idempotent can be chosen to
be

U = 1
2(I + e0).

We now show that all elements of the Pauli algebra are ‘absorbed’ or ‘annihilated’ when an
idempotent factorU is adjacent to the element on the right and on the left, in accord with
corollary 3.2. Since the pseudoscalar i commutes with the whole algebra, we need only show
that the three basis vectors are absorbed:

(I + e0)e0(I + e0) = (I + e0)
2 = 2(I + e0)

(I + e0)e1(I + e0) = e1(I − e0)(I + e0) = 0.

We note that the projectore0 is absorbed with a non-zero coefficient, wherease1 (and likewise
e2) gives zero on absorption, through the idempotent condition.

Example 2. Our second example uses the Clifford algebra appropriate to Dirac’s theory of the
electron. The real algebraR1,3 is not the appropriate Clifford algebra, since it does not contain
an element with the properties of the imaginary unit. The appropriate algebra isR2,3, which
satisfies the conditionq − p = 1 and whose pseudoscalar element can therefore be used as
the imaginary unit i. An orthonormal vector basis{er; r = 0, 1, 2, 3, 4} has anti-commuting
elements satisfying

e2
0 = e2

1 = −e2
2 = −e2

3 = −e2
4 = I. (A.2)

The basis elements of the algebraR2,3 are all products of these five basis vectors. We can
alternatively derive all of the basis elements as products of five multiplicatively independent
basis elements ofR2,3, where multiplicative independence is defined in section 1. For example,
we can choose to define all elements as products of the five elements{i ander; r = 1, 2, 3, 4}.

The maximum number of commuting projectors is

k = q − r1 = 3− 1= 2

and they can be chosen to bee1e4 ≡ e14 and ie2e3 ≡ ie23. The four possible primitive
idempotents are then

1
4(I ± e14)(I ± ie23).

We shall use the idempotent

U = 1
4(I + e14)(I + ie23)

in this example.
By corollary 3.2, the basis elements of the algebra divide into two sets of terms: those

that are ‘absorbed’ when they occur sandwiched between two factorsU and those that are
annihilated. We shall identify these two sets of terms for this example, which are analogous to
the two sets (a) and (b) in the proof of theorem 3.2. However, in this case, since the conditions
of corollary 3.2 hold, the sets of type (a) and (b) are not restricted only to terms which square
to I ; the totality of basis elements divides into these two sets.
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The chosen projector set is{e14, ie23}. Either of these two elements is ‘absorbed’ when
placed between factorsU . For example, takingeT = e14,

Ue14U = 1
4(I + e14)(I + ie23)e14U

= 1
4(I + e14)(I + ie23)U = U2.

Any element which is a combination of these two elements and the imaginary unit i will also be
absorbed in a similar way with a non-zero (complex) coefficient. Thus any linear combination
of products of the elements{I, e14, ie23, i} will also be absorbed.

We have noted that all the basis elements ofR2,3 can be derived from five multiplicatively
independent basis elements. To identify sets analogous to types (a) and (b), we choose five
suitable multiplicatively independent elements. We can select the projectorse14 and ie23 as two
of the five basis elements, and the pseudoscalar i can be used as a third independent element.
The two other elements can be chosen to be, for example,e1 ande12. Then a suitable set of
five elements from which all the basis elements can be derived is{e14, ie23, i, e1, e12}. If we
consider the result of placing each of these five elements between idempotents, then we can
derive the behaviour of all basis elements. The first three of these five forms set (a) and basis
elements formed exclusively from these three have been considered above: they are absorbed
with non-zero coefficients.

We now consider the remaining basis elements, each of which must contain at least one
of e1 ande12 as a factor. All of these terms comprise set (b), that is, they get annihilated
when placed between two nilpotents, sincee1 ande12 get annihilated. To illustrate the process,
the element we consider iseT = e4 = −(e14)e1, containing the projectore14 and the ‘other’
elemente1:

Ue4U = − 1
4(I + e14)(I + ie23)e14e1U

= − 1
4(I + e14)e14e1(I + ie23)U

= − 1
4(I + e14)e1(I + ie23)U

= − 1
4e1(I − e14)(I + ie23)

1
4(I + e14)(I + ie23)

= − 1
8e1(I − e14)(I + e14)(I + ie23) = 0

using the idempotent property. We see that commutation of the factore1 has caused the crucial
change of sign in(I + e14) in this calculation, compared with the calculation above with
eT = e14.

Example 3. In example 1, we used an idempotent of the Pauli algebra to exemplify the process
of absorption. We now show how the idempotent can be factorized into a conjugate pair of
nilpotent factors.

The nilpotent factors are of the form

N = 1
2(H +A) N† = 1

2(H − A) (A.3)

and we takeH = e1 andA = ie2. Then the conditions of theorem 5.1 are satisfied, ensuring
that

N2 = N†2 = 0

and that

NN† = 1
4(e1 + ie2)(e1− ie2) = 1

2(I + e0) = U.
It is easy to see thatNe3N

† = −NN†, and thatNe1N
† = Ne2N

† = 0.
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Example 4. As a second example of factorization into nilpotents, we use the idempotent

U = 1
4(I + e14)(I + ie23)

of example 2. The two simple idempotent factors ofU have nilpotent factors
1
2(I + e14) = 1

4(e1− e4)(e1 + e4) (A.4a)
1
2(I + ie23) = 1

4(ie2 − e3)(ie2 + e3). (A.4b)

If we define

N = 1
4(e1− e4)(ie2 − e3) (A.5)

and

N† = 1
4(ie2 + e3)(e1 + e4) (A.6)

then anti-commutation of the brackets inN andN† ensures that

N2 = N†2 = 0

while

NN† = 1
4(I + e14)(I + ie23).

SoN andN† form a conjugate pair of nilpotent factors of the idempotentU . It is easy to
check that the elementse14 ande4 considered in example 2 are absorbed in a similar way by
the nilpotent pair:

Ne14N
† = NN† Ne4N

† = 0.

Appendix B

As we have mentioned in the main text, we have based a model [9] of the electroweak
interactions on the Clifford algebraR1,6. This algebra satisfies all of the conditions which
are needed in order to formulate our type of gauge theory [5]. However, in this work we used
one-sided gauge transformations of spinors, so that the new type of interaction terms did not
occur. In this appendix, we examine what changes need to be made to the gauge transformations
if we use two-sided gauge transformations of the form (2.8) on algebraic spinors, which are
elements of minimal left ideals, in order to generate the correct electroweak interaction terms
for leptons.

The vector basis{er; r = 0, 1, . . . ,6} of the algebraR1,6 has

e2
0 = I e2

r = −I (r = 1, 2, . . .6)

and the dimensions(0, 1, 2, 3) represent spacetime. Sinceq − p = 6− 1 = 5 = 1 mod(4),
the pseudoscalarω of the algebra can be identified with the imaginary unit, and corollary 3.2
applies. The maximum number of commuting projectors is

k = q − r5 = 6− 3= 3

and we can take the three projectors as, for example,

{e03, ie0123≡ iη, ie45 ≡ ρ3}. (B.1)

The symbolη in (B.1) is the spacetime pseudoscalar, andρ3 is one of the triple

{ρ1 = ie56, ρ2 = ie64, ρ3 = ie45} (B.2)

which satisfy the fundamental relations of the Pauli algebra. In our model, these elements are
proportional to generators of theSU(2) gauge transformations. From the three projectors (B.1)
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we can define eight different primitive idempotents, each dependent on sixteen real parameters.
We can use any one of these idempotents to define the spinor corresponding (in the first family
of particles) to the electron and its neutrino. We find that the choice

U = 1
8(I + e03)(I − iη)(I − ρ3) ≡ U+

1U
+
2U

+
3 (B.3)

is particularly interesting. The spacetime helicity projection operators are

h± = 1
2(I ± iη). (B.4)

We note that one of these occurs inU , introducing a helicity asymmetry in the spinor. In
our model, the electroweak interaction terms for leptons, placed in the ‘usual’ position in the
Lagrangian, are

−〈ψ̄ ieµ�µψ〉S = −
〈
ψ̄ ieµ

[
(ig/2)

3∑
r=1

h+ρrWrµ + (ig′/2)(h−ρ3 + I )W4µ

]
ψ

〉
S

(B.5)

where{Wrµ; r = 1, 2, 3, 4} are the boson potentials andg andg′ are theSU(2) andU(1)
coupling constants. These terms, taken to be normal interaction terms with idempotent spinors,
have been shown to generate the usual interactions for leptons [9]. The helicity projection
operators have to be introduced because we include both right-handed and left-handed neutrino
spinor states. Thehelicity-dependentpart of this interaction involves

�hµ = (ig/2)
3∑
r=1

h+ρrWrµ + (ig′/2)h−ρ3W4µ. (B.6)

In the context of this paper using two-sided gauge transformations, the helicity dependent
terms (B.6) may generate new terms equivalent to aU(1) interaction of the form (4.2). To
consider these new terms explicitly, we must evaluate the term (4.2) which contains

U�hµU. (B.7)

First note that the helicity operators (B.4) commute with the factor(I − ρ3) in U . So from the
first term in (B.6), the contribution to (B.7) contains the factors

(I − iη)h+ = 0.

So there is no contribution to the new interaction term (4.2) arising from the positive helicity
term in (B.6). However, the negative helicity term in (B.6) does give a contribution, since

1
2(I − iη)h− = 1

2(I − iη).

Since the factorρ3 is absorbed through

(I − ρ3)ρ3 = −(I − ρ3)

the extra interaction term arising from the second term in (B.6) contains

(ig′/2)Uh−ρ3W4µU →−(ig′/2)IW4µU
2. (B.8)

The contribution of this term to the Lagrangian through (4.7) is therefore precisely the same
as that normally derived from thehelicity-independentU(1) interaction term in (B.5). So
this term does not have to be generated by a separate term in the gauge transformation. The
surprising result is that thefull gauge transformation needed to derive the observed lepton
interactions is that normally required to generate only the helicity-dependent terms (B.6). The
rather strange helicity-minus combination of terms observed in nature therefore arises from a
simple gauge transformation.
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We can alternatively adopt the new definition of spinors as described in section 5. We
factorize eachU+

i , i = 1, 2, 3 according to (5.6) as follows,

U+
1 = 1

4(e0 − e3)(e0 + e3) ≡ N1N
†
1

U+
2 = 1

4(e0 + ie123)(e0 − ie123) ≡ N2N
†
2

U+
3 = 1

4(ie4 + e5)(ie4 − e5) ≡ N3N
†
3 .

(B.9)

The nilpotentsHi , i = 1, 2, 3, in the factorization areH1 = H2 = e0 andH3 = ie4. Thus,
from (5.8a) and (5.8b) the idempotentU can be respectively written as

U = 1
2(e0 − e3)e0

1
2(e0 + ie123)e0

1
2(ie4 + e5)ie4 (B.10a)

U = 1
2ie4(ie4 − e5)

1
2e0(e0 − ie123)

1
2e0(e0 + e3). (B.10b)

To identify the form ofN andN†, we anticipate the result of (5.11) by bringinge0 factors
through all of theHi to the right in (B.10a) and to the left in (A.10b), giving

U = 1
2(e0 − e3)

1
2(e0 − ie123)

1
2(ie4 + e5)e0e0ie4 (B.11a)

U = 1
2ie4e0e0(ie4 − e5)(e0 + ie123)

1
2(e0 + e3). (B.11b)

The expressions (A.11) provide the factorization ofU into nilpotentsU = NN†, whereN and
N† are

N = 1
8(e0 − e3)(e0 − ie123)(ie4 + e5)

N† = 1
8(ie4 − e5)(e0 + ie123)(e0 + e3).

(B.12)

Again, if we assume that the terms (B.6) are generated by the gauge transformation, contributing
in the ‘usual’ way to the interaction, then the additional term arising because of the two-sided
transformation is

Ng′h−ρ3W4µN
† = −g′IW4µNN

†.

Once more, this term completes the lepton interaction (B.5).
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